Section One: Calculator Free

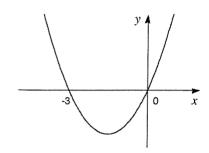
(24 marks)

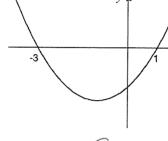
This section has **five (5)** questions. Answer **all** questions. Write your answers in the spaces provided.

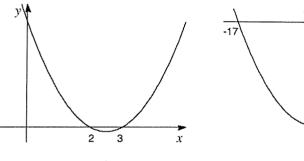
Working time for this section is 25 minutes.

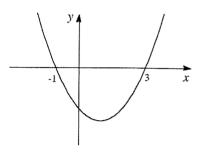
Question 1 (3 marks)

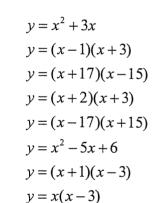
Shown are eight quadratic functions, numbered 1 to 8, and five graphs, lettered A to E. Each graph corresponds to one of the functions. Decide which function goes with which graph. You will have three functions left over.











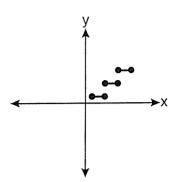
Solution	Specific behaviours	Point
$A y = x^2 + 3x$	✓ Identifies two quadratics.	?
$B \ y = (x-1)(x+3)$ $C \ y = (x+1)(x-3)$		
$D y = (x + 1)(x - 3)$ $D y = x^2 - 5x + 6$	✓ Identifies four quadratics	
$E \ y = (x+17)(x-15)$	✓ Identifies all five.	

(5 marks)

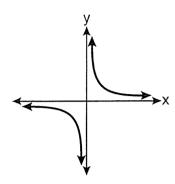
Circle the correct answer for the following questions:

(a) Which represents a relation that is not a function?

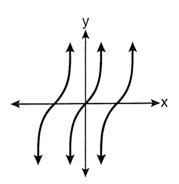
(1 mark)



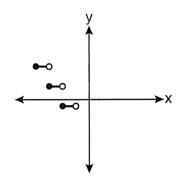
В



С



D

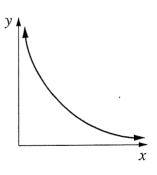


Solution	Specific behaviours	
A	✓ Correct answer.	

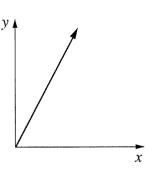
(b) Which graph shows that y is directly proportional to x?

(1 mark)

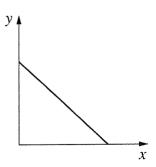
Α



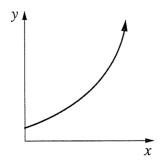
В



C



D



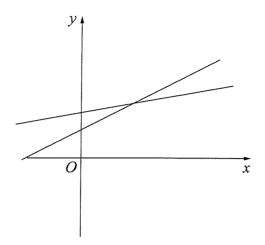
Solution	Specific behaviours
В	✓ Correct answer.

(c) George drew a correct diagram that gave the solution to the simultaneous equations y = 2x - 5 and y = x + 6.

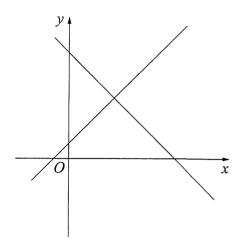
Which diagram did he draw?

(1 mark)

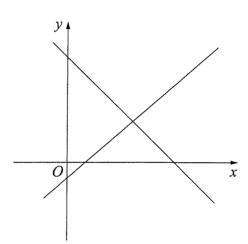
Α



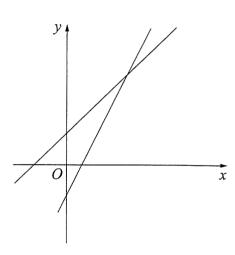
В



С



D



Solution	Specific behaviours
D	✓ Correct answer.

(d) Which equation represents the relationship between x and y in this table? (1 mark)

х	0	2	4	6	8
y	1	2	3	4	5

$$\mathbf{A} \qquad y = 2x + 1$$

B
$$y = 2x - 2$$

C
$$y = \frac{x}{2} - 2$$

Solution	Specific behaviours	
D	✓ Correct answer.	

- (e) For the graph $y = ax^2 + bx + c$, if a and c are both positive, which of the following statements is true. (1 mark)
 - (\mathbf{A}) The graph will have a minimum turning point, and a positive *y*-intercept.
 - **B** The graph will have a maximum turning point, and a positive *y*-intercept.
 - ${\bf C}$ The graph will have a maximum turning point, and has two positive x intercepts.
 - **D** The graph will have a minimum turning point, and a negative *y*-intercept.

Solution	Specific behaviours
A	✓ Correct answer.

(2 marks)

The linear function f(x) = 4 - x has range $-2 \le f(x) < 6$.

Determine the domain of the function.

Solution	Specific behaviours
-2 = 4 - x	
x = 6	
6 = 4 - x	✓ Works backwards from range to
x = -2	determine values for domain.
$D_x : \{x : -2 < x \le 6\}$	✓ States domain.

(6 marks)

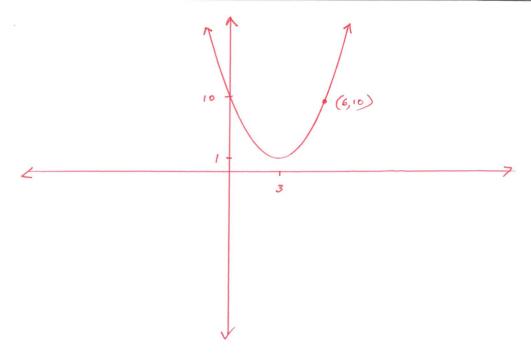
(a) Complete the square for $x^2 - 6x + 10$.

(2 marks)

Solution		Specific behaviours	Point
$x^{2}-6x+10=(x-3)^{2}-9+10$	~	Uses completing the square.	?
$= \left(x-3\right)^2 + 1$	✓	Correct answer.	

(b) Using your result from part (a), sketch the graph $y = x^2 - 6x + 10$, showing all significant features. (3 marks)

Solution	Specific behaviours	Point
	✓ Turning point at $(3, 1)$.	?
	\checkmark y-intercept at $(0, 10)$.	
	✓ Correct graph.	



(c) Explain how the graph can be used to show the following statement is always true: (1 mark)

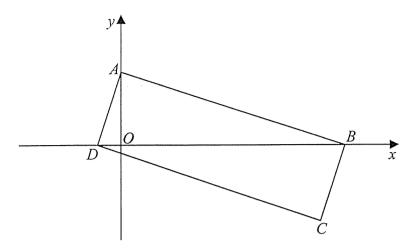
"When a real value of x is substituted into $x^2 - 6x + 10$ the result is positive."

Solution	s	Specific behaviours	Point
Since the curve is always above the	V	Recognises that curve is always	?
x-axis, then $y = x^2 - 6x + 10$ would		above x-axis, and hence answer is	
always been positive.		always positive.	

6

Question 5 (8 marks)

The figure below shows a rectangle ABCD.



The point A lies on the y-axis and the points B and D lie on the x-axis as shown.

Given that the straight line through the points A and B has equation 5y + 2x = 10

(a) show that the straight line through the points A and D has equation 2y - 5x = 4. (3 marks)

Solution	Specific behaviours	Point
$AB: y = -\frac{2}{5}x + 2 \Rightarrow m_{\perp} = \frac{5}{2}$	✓ Determines perpendicular gradient.	1.1.4 1.1.5
$AD: y = \frac{5}{2}x + 2$	✓ Determines equation of <i>AD</i> .	
2y = 5x + 4 $2y - 5x = 4$	✓ Rearranges.	

(b) determine the coordinates of the points B and D.

(2 marks)

Solution	Specific behaviours	Point
2x = 10	(Data make a condition of D	1.1.5 10A
$x = 5 \Longrightarrow B(\mathcal{O}_{p}0)$	✓ Determines coordinates of <i>B</i> .	IUA
-5x = 4		
$x = -\frac{4}{5} \Rightarrow D\left(-\frac{\mu}{5}, \circ\right)$	✓ Determines coordinates of <i>D</i> .	

(c) determine the coordinates of the midpoint of the diagonal BD.

(1 mark)

Solution	Specific behaviours	Point
$\frac{-\frac{4}{5}+5}{2} = \frac{21}{10} i.e.\left(\frac{21}{10},0\right)$	✓ Determines coordinates of midpoint.	?

(d) The diagonals of a rectangle bisect. *Use this fact*, along with your results from part (a) and (c), to determine the coordinates of the point *C*. (2 marks)

Solution	Specific behaviours	Point
$\left(\frac{0+x}{2}, \frac{2+y}{2}\right) = \left(\frac{21}{10}, 0\right) = (2.1, 0)$	✓ Determines midpoint formula, or 'steps it out'.	?
$C\left(\frac{21}{5},-2\right) = (4.2,-2)$	✓ Determines coordinates.	

End of Calculator Free Section

Section Two: Calculator Assumed

(31 marks)

This section has **four (4)** questions. Answer **all** questions. Write your answers in the spaces provided.

Working time for this section is 30 minutes.

Question 6 (6 marks)

An air balloon leaves its base at 12 noon and is moving such that its height, h metres, above sealevel at any time t hours, after 12 noon, is given as

$$h(t) = -\frac{3}{4}(t+1)(t-16)$$
 for $0 \le t \le 20$

Determine:

(a) the initial height above sea-level.

(1 mark)

Solution	Specific behaviours
t=0 $k(6)=12 m$	✓ Correct answer.

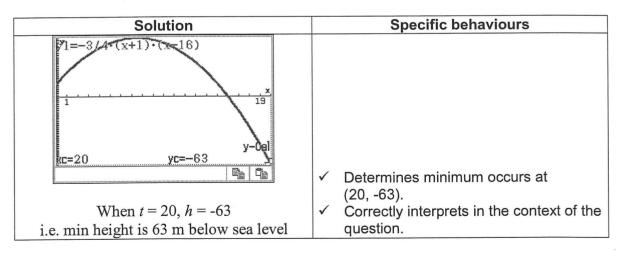
(b) the maximum height, correct to one decimal place, to which the balloon rises.

(1 mark)

Solution	Specific behaviours
$(7.5) = 54.2 \mathrm{m}$	✓ Correct answer.

(c) the minimum height to which the balloon sinks over the time interval.

(2 marks)



The balloon is to manoeuvre over a building of height 30 metres above sea level.

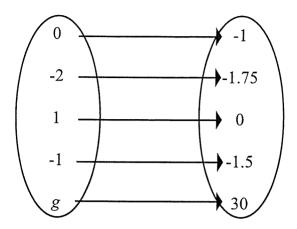
(d) During what times, correct to two decimal places, will it be able to do this? (2 marks)

Solution	Specific behaviours	
$30 = -\frac{3}{4}(t+1)(t-16)$ $1.82 \le t \le 13.18$	✓ Writes equation, or indicates on graph solution method.✓ States times.	

ce between 1:49 pm + 1:11 am the next day

(7 marks)

The mapping below is of the form $f: x \to a \times 2^x + b$ and maps the elements of x to elements of y.



(a) List the elements in the domain of f(x).

(1 mark)

Solution	Specific behaviours
$D_x = \{-2, -1, 0, 1, g\}$	✓ Determines the domain.

(b) List the elements in the range of f(x).

(1 mark)

Solution	Specific behaviours
$R_y = \{-1.75, -1.5, -1, 0, 30\}$	✓ Determines the range.

(c) Find a and b.

(3 marks)

Solution	Specific behaviours
$(0,-1) \Rightarrow -1 = a+b (1)$	(2)
$(1,0) \Rightarrow 0 = 2a + b (2)$	✓ Sets up simultaneous equations.
$(2) - (1) \Rightarrow 1 = a$	✓ Correct value for <i>a</i> .
$\Rightarrow b = -2$	✓ Correct value for <i>b</i> .

(d) Find the value of g.

(2 marks)

Solution	Specific behaviours
$f(x) = 2^x - 2$	
$30 = 2^g - 2$	✓ Sets up equation.
$32 = 2^g$	
g = 5	✓ Correct value for <i>g</i> .

Question 8 (9 marks)

(a) Show that the lines y+2x=3 and 2y-x=1 are perpendicular. At what point do they intersect? (3 marks)

Solution	Specific behaviours	Point
y = -2x + 3		?
$y = \frac{1}{2}x + \frac{1}{2}$	✓ Rearranges.	
$\frac{1}{2} \times (-2) = -1 \Rightarrow \text{ perpendicular}$	✓ Shows they are perpendicular.	
$ y + 2x = 3 $ $2y - x = 1 $ $ \left\{ (1,1) \right\} $	✓ Determines point of intersection.	

(b) Determine the equation of the line, having an x-intercept of -4, and which is parallel to the line connecting the turning point of $y = (x+1)^2 + 3$ with (3, 7). (3 marks)

Solution	Specific behaviours	Point
TP(-1,3)	✓ Determines turning point of	?
$m=\frac{7-3}{2}$	parabola.	
$m = \frac{1}{3 - (-1)}$	/ Determines andient of line	
m=1	✓ Determines gradient of line through turning point and (3, 7).	
y = x + c $0 = -4 + c$		
c=4		
y = x + 4	✓ Determines equation of line.	

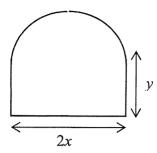
(c) The line with an angle of inclination to the positive x axis of 135° and y intercept of $-\frac{1}{2}$. State your answer in the form ax + by = c, where a, b and c are integers. (3 marks)

Solution	Specific behaviours	Point
$m = \tan 135^\circ = -1$	✓ Determines gradient.	?
$y = -x - \frac{1}{2}$	✓ Determines equation of the line.	
$x + y = -\frac{1}{2}$ $2x + 2y = -1$	✓ Rearranges into required form.	

(9 marks)

A window pane is to be made from 12 metres of steel.

The pane is to have a rectangular base and a semi-circular top as shown.



If the base of the pane is 2x metres and the side y metres then:

(a) show that
$$y = 6 - x - \frac{\pi}{2}x$$
. (2 marks)

Solution	Specific behaviours	Point
$12 = 2x + 2y + \frac{1}{2} \times 2\pi x$	✓ Works out equation for perimeter.	?
$12 = 2x + \pi x + 2y$		
$2y = 12 - 2x - \pi x$		
$y = 6 - x - \frac{\pi}{2}x$	✓ Rearranges into required form.	

(b) show that the area enclosed by the pane is given by
$$A(x) = 12x - 2x^2 - \frac{\pi}{2}x^2$$
. (3 marks)

Solution	Specific behaviours	Point
$A(x) = 2xy + \frac{1}{2}\pi x^2$	✓ Works out equation for area.	?
$A(x) = 2x\left(6 - x - \frac{\pi}{2}x\right) + \frac{\pi}{2}x^2$	Substitutes in answer from part $y = 6 - x - \frac{\pi}{2}x$.	
$A(x) = 12x - 2x^2 - \pi x^2 + \frac{\pi}{2}x^2$		
$A(x) = 12x - 2x^2 - \frac{\pi}{2}x^2$	 ✓ Expands and shows required formula. 	

(c) calculate the maximum area enclosed by the pane, and the length of the base and side that gives the maximum area. State all answers correct to 1 decimal place. (4 marks)

Solution	Specific behaviours	Point
max TP at (1.68,10.08) Maximum area is 10.1 m ² Base length is 3.4 m Side length is 1.7 m	 ✓ Determines maximum TP. ✓ States maximum area. ✓ States base length. ✓ States side length. 	?

End of Calculator Assumed Section